Equivariant Embeddings and Compactifications of Free G-spaces

نویسنده

  • NATELLA ANTONYAN
چکیده

For a compact Lie group G, we characterize free G-spaces that admit free Gcompactifications. For such G-spaces, a universal compact free G-space of given weight and given dimension is constructed. It is shown that if G is finite, the ndimensional Menger free G-compactum μn is universal for all separable, metrizable free G-spaces of dimension less than or equal to n. Some of these results are extended to the case of G-spaces with a single orbit type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

equivariant compactifications of G na Brendan Hassett and Yuri Tschinkel February 1999

In this paper we begin a systematic study of equivariant compactifications of Ga . The question of classifying non-equivariant compactifications was raised by F. Hirzebruch ([10]) and has attracted considerable attention since (see [5], [15], [12] and the references therein). While there are classification results for surfaces and non-singular threefolds with small Picard groups, the general pe...

متن کامل

Geometry of Equivariant Compactifications of G na Brendan Hassett and Yuri Tschinkel

In this paper, we begin a systematic study of equivariant compactifications of Ga . The question of classifying nonequivariant compactifications was raised by F. Hirzebruch (see [10]) and has attracted considerable attention since (see [6] , [15] , [12] , and the references therein). While there are classification results for surfaces and nonsingular threefolds with small Picard groups, the gen...

متن کامل

A remark on Remainders of homogeneous spaces in some compactifications

‎We prove that a remainder $Y$ of a non-locally compact‎ ‎rectifiable space $X$ is locally a $p$-space if and only if‎ ‎either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact‎, ‎which improves two results by Arhangel'skii‎. ‎We also show that if a non-locally compact‎ ‎rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal‎, ‎then...

متن کامل

Geometry of equivariant compactifications of Ga

In this paper we begin a systematic study of equivariant compactifications of Ga . The question of classifying non-equivariant compactifications was raised by F. Hirzebruch ([10]) and has attracted considerable attention since (see [5], [15], [12] and the references therein). While there are classification results for surfaces and non-singular threefolds with small Picard groups, the general pe...

متن کامل

On Embeddings of Homogeneous Spaces with Small Boundary

We study equivariant embeddings with small boundary of a given homogeneous space G/H, where G is a connected linear algebraic group with trivial Picard group and only trivial characters, and H ⊂ G is an extension of a connected Grosshans subgroup by a torus. Under certain maximality conditions, like completeness, we obtain finiteness of the number of isomorphism classes of such embeddings, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001